If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+3y-20=0
a = 1; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·1·(-20)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*1}=\frac{-3-\sqrt{89}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*1}=\frac{-3+\sqrt{89}}{2} $
| X+3×=x+x÷10 | | 25x+8+9+2=180 | | 4-a=13 | | -27d=14 | | 3(x+7)-3=3x+18 | | 2s-5=-9 | | 3(x-7)-3=3x+18 | | 60=-16t^2+28t+60 | | t-3/4t+3/2=3/4(t+1/2) | | 4x-4=x-1 | | 4d-2d+5=13 | | 216=6^2r-11 | | 18s-11s-4s=6 | | x+76=-3x-8 | | 1/2(6x)^2+4=226 | | 4l=59 | | 12b-9b+5=8 | | 19p-10p-9p+2p=18 | | 1092=6(x+17) | | 3y-4=39 | | 10u-10u+4u-4u+2u=12 | | 3n^2+10n+7=0 | | 7y-4=y+230 | | 4x+2(x-3)=3(x+3)-2x | | 19b+6b-15b=10 | | 2.3a=11.5 | | 6x+42=6(x+7) | | 3x+1=×+13 | | 15z-14z-z+4z=20 | | 148=4x+58 | | 17g-16g=19 | | 3(x+7=7x-15 |